Energia-kilátásaink : Zöldtechnológia
"A földet nem apáinktól örököltük, hanem unokáinktól kaptuk kölcsön" /David Attenborough/
  • RSS
  • Delicious
  • Digg
  • Facebook
  • Twitter
  • Linkedin
  • Napot a földre: A franciaországi Cadarche-ban épül a világ első kísérleti fúziós erőműve, az ITER. Három évtized és közel 24 milliárd dollárnyi befektetés után a 25 ezer tonnás ITER lassan elhozhatja a Napot ...
  • Tesla üzemanyag nélküli autója:A fizikakönyvek kevésbé foglalkoznak Nikola Teslával, pedig a horvát származású fizikus és villamosmérnök az egyik legnagyobb elme, aki valaha létezett. Számtalan zseniális találmány fűződik a nevéhez, közöttük olyan is, melyre ...
  • Balesetnél sem veszélyes az elektromos Mitsubishi:Könnyedén ment át az ADAC töréstesztjén a Mitsubishi elektromos miniautója, az i-MiEV. Baleset esetén sem fenyeget áramütés veszélye. 15 európai országban kezdődik hamarosan a Mitsubishi elektromos minije, a Citroën C-Zeróval ...
  • Elektromos szörnyeteg, Citroen Survolt:Vad, sportos megjelenésű, elektromos motorral hajtott tanulmány autó a Citroen garázsából Tanulmány autók végeláthatatlan sora jellemzi az idei Genfi Autószalont. A gyártók talán ezzel szemléltetik a világnak, tudnak meglepetéseket is okozni. A ...
  • Egyedülálló fejlesztés a lillafüredi kisvasúton: A világ első keskeny nyomközön járó, hibridhajtású mozdonyát állították üzembe a lillafüredi erdei kisvasúton. Az energiahatékony és környezetbarát mozdony teljes egészében magyar tervezők munkája. A ...
Home » Egyedülálló fejlesztés a lillafüredi kisvasúton

A környezetszennyezés egyidős az emberiséggel. Bár egyes zöld szervezetek hajlamosak megfeledkezni róla, az energiaforrások felhasználása és az abból eredő környezeti terhelés sajnos éppúgy a civilizáció kikerülhetetlen velejárója, mint a bálnák tengerbe való visszatuszkolása. Nem kis részben a zöldeknek köszönhetően az utóbbi években egyre inkább a figyelem középpontjába került az energiaprobléma és a fenntartható fejlődés kérdése. A 80-as években még főként környezetvédelmi téma volt, a 90-es évekre már erőteljesen politikai kérdéssé is vált mindez.

Az energiahordozók felhasználásának robbanásszerű növekedését az ipari forradalom hozta el. Ez a környezetszennyezés forradalma is volt. Igazán sikeresen attól kezdve romboljuk környezetünket és éljük fel a rendelkezésünkre álló energiahordozókat. Az emberiség energiaigénye azóta folyamatosan növekszik. Ha megvizsgáljuk, hogyan változott a világ energiafelhasználása az 1970-es évektől, a bal oldali ábrát kapjuk eredményül (az energiaértékek terrawatt (TW) egységben értendők)

1970 és 2002 között mintegy 90 %-al nőtt a felhasznált energia mennyisége. Gazdaságkutató szakemberek egyetértenek abban, hogy ez a tendencia a XXI. században is tovább tart majd. Az ábrán az Amerikai Energia Hivatal egyik szervének, az Energy Information Administration-nek (EIA) a prognózisa látható, mely szerint 2020-ig további 60 %-os növekedés várható. Miért? Egyrészt a világ népessége folyamatosan nő. 2050-re az ENSZ előrejelzése szerint a mostani 6-ról 10 milliárdra. Másrészt egyes fejlődő országok (főleg a távol-keleti, valamint a közép-, és dél-amerikai régióban) gazdasága igen gyorsan növekszik. Jelenleg a fejlett országok (OECD) a világ energiaforrásainak több, mint felét használják, pedig népességük a világ népességének csak alig 20 %-a. A fejlődő országokban az egy főre jutó átlagos energiafogyasztás hatoda a fejlett országokéinak. Ez a jövőben biztosan megváltozik.

Mi lesz, ha a világ népességének 80 %-át kitevő fejlődő országok lakói akár csak megközelítően olyan szinten fognak élni, mint a fejlett országok polgárai? Ha a következő 50 évben akár csak kétszeresére nő az egy főre jutó energiafelhasználás a fejlődő országokban (ami biztos), a várható népességnövekedéssel együtt ez legalább kétszeres energiafelhasználást eredményez a világon.

Ahhoz, hogy ennek következményeit le tudjuk mérni, most megvizsgáljuk azoknak az energiaforrásoknak a tulajdonságait, melyekből ma energiát termelünk. Szándékosan rosszindulatúak leszünk, és azokra a problémákra világítunk rá, amelyek a különböző energiaforrásokkal kapcsolatban felmerülnek.

Energiaforrások és készletek

A világon ma használt energiaforrásokat az alábbi 3 csoportba oszthatjuk:

Fosszilis tüzelőanyagok: – olaj- szén- földgáz

Nukleáris hasadóanyagok: – urán- tórium
Megújuló energiaforrások: – vízenergia- szélenergia- napenergia- árapály energia- hullámenergia- geotermikus energia- óceánok hőáramlási energiája- biomassza

Az alábbi torta azt mutatja, hogy az egyes energiahordozók milyen mértékben veszik ki részüket energiaigényeink fedezéséből (EIA adatok):

Fosszilis tüzelőanyagok

Jelenleg az emberiség energiaszükségletének túlnyomó részét, majdnem 80%-át olaj, szén és földgáz elégetéséből nyeri. Ezek a források természetesen egyszer elfogynak, kérdés csak az, mikor.

Olaj:

Legfőbb energiaforrásunk közel 35 %-al az olaj, főként azért, mert a közlekedés és szállítás túlnyomó része erre az energiaforrásra épül és ez a közeljövőben biztosan így is marad. A felhasznált napi 80 millió hordós mennyiség évi 2-3 %-al nőni fog a következő 20 évben. Becslések szerint a jelenlegi felhasználási ütem mellett körülbelül 30 – 40 évre elegendő az úgynevezett hagyományos olajkészlet, vagyis amit a mai olajkutakkal termelünk ki (jegyezzük meg, hogy ez a szám azért valószínűleg nagyobb. Az előbbi érték csak az, amit ma becsülnek a szakemberek, és ami a feltárások folytatásával valamelyest nőhet). A Föld mélye még ennek 2-3 szorosát rejti magában olyan formában, melyet csak nagyobb energiabefektetéssel és drágább technológiák alkalmazásával lehet a felszínre hozni. Az úgynevezett nehéz olaj, a kátrányhomok, és az olajpala azokat a készleteket alkotják, melyeket ma ugyan még nem hasznosítanak az alacsony piaci árak miatt, de amint a hagyományos készletek fogyása miatt jelentősen megnőnek az olajárak, gazdaságossá válik kitermelésük.

Földgáz

A földgáz az a tüzelőanyag, amelynek felhasználása gazdasági és környezetvédelmi okokból kifolyólag is a legerőteljesebben növekszik. A gázturbinás erőművek világszerte terjedőben vannak. 1999 óta több energiát termel földgázzal az emberiség, mint szénnel, és az elkövetkező 20 évben előreláthatólag kétszeresére nő az elégetett éves mennyisége. A mai felhasználás mellett a készletek 60 – 70 évre elegendőek.

Szén

A szénnek, amely a XIX. században még a gazdasági fejlődés motorja volt, egyre csökkenő részesedése van az energiatermelésben. Bár éves felhasznált mennyisége- főleg India és Kína “jóvoltából” – 2020-ra mintegy 40 %-al növekszik, a összenergiafelhasználás ennél gyorsabban nő, ezért a szén részaránya egyre alacsonyabb lesz. A Föld készletei a mai fogyasztás mellett még mintegy 230 évre elegendőek.

Az a tény, hogy az emberiség ma a fosszilis tüzelőanyagokra építi civilizációját, két fő problémát vet fel:

1. Az előbbi számokból látszik, hogy a jelenlegi energiastruktúra a készletek fogyása miatt már a század végéig sem tartható fenn. Ma úgy számolhatunk, hogy legkésőbb a 2050-es években mindenképpen hiány jelentkezik. Ez persze még nem holnap lesz, de a most fiatal generációkat már érinteni fogja.

2. Az energiahordozók kimerülésénél is nagyobb problémát jelent azonban az az óriási környezetszennyezés, amit a fosszilis tüzelőanyagok használata okoz. Ez egyrészt azoknak a kén és nitrogén oxidoknak köszönhető, amelyek a levegőbe kerülve közvetlenül felelősek a légzőszervi megbetegedések számának növekedéséért, a savas esőkért, a talaj és az édesvizek savasodásáért, a nagyvárosi szmogért. A Föld jövője szempontjából azonban van még egy ennél jóval jelentősebb környezetszennyező hatás: az üvegházhatást okozó gázok keletkezése. Legjelentősebb ezek közül a CO2 (emellett még a metán és a salétrom oxid játszik fontos szerepet). A legtöbb üvegházhatást okozó gázt a szén elégetése termeli. Ha a különböző típusú erőművekben ugyanannyi energiát akarunk termelni, az ehhez szükséges szén elégetésével 80 %-al több CO2 kerül a levegőbe, mintha gázt használnánk, és 20 %-al több, mintha olajszármazékot. Ma a CO2 kibocsátás 50 %-áért az olaj, 30%-áért a szén, 20%-áért pedig a földgáz a felelős (és 100 %-áért az ember).

A CO2 kibocsátás az ipari forradalom kezdetétől folyamatosan nő. Mérések azt mutatják, hogy az elmúlt 160 000 évben az atmoszféra CO2 koncentrációja közel állandó volt, majd az 1800-as évek elején rohamosan növekedni kezdett. Mára sikerült elérni, hogy a kezdeti értéknél 25 %-al nagyobb legyen. (Persze felmerül a kérdés, hogy honnan tudjuk, mennyi volt a CO2 mennyisége 160 000 évvel ezelőtt. Nos, az antarkriszi jégpáncélban megőrződtek a különböző időszakokból származó légbuborékok, melyek korát és összetételét nagy pontossággal meg lehet állapítani)

Ezen az ábrán nyomon követhetjük a CO2 kibocsátás alakulását 1990 – től kezdődően. Jelenleg a fejlett országok felelősek a CO2 kibocsátás 50 %-áért, ennek felét egyedül az Egyesült Államok okozza. Sajnos a fejlődő országok iparosodása azt eredményezi, hogy CO2 kibocsátásuk a jövőben jelentősen megnő és 2020-ra átvehetik a vezető szerepet. ( itt jelenleg Kína viszi a prímet 11%-al).

Nukleáris hasadóanyagok

Az atomreaktorok a II Világháború után kapcsolódtak be az energiatermelésbe. Részesedésük azóta folyamatosan növekedett, ma a világ energiafelhasználásának közel 7 %-át biztosítják atomenergia termeléssel (az atomenergia az elektromos energia termelésből 17%-al veszi ki a részét). A folyamat az 1990-es években megfordult, 2020-ig az atomenergia részesedése csökkenni fog. Ez azért van, mert a 70-es, 80-as évek atomerőmű építési hulláma alatt több jelentős reaktorbaleset is bekövetkezett, ami meglehetősen rontotta az atomenergetika imidzsét. Sok országban erős társadalmi ellenszenv bontakozott ki az atomerőművekkel szemben. Japán kivételével ma egyetlen fejlett országban sem épül atomerőmű. Az atomenergia részesedése mégsem fog jelentősen csökkenni. Egyrészt azért, mert a fejlett országok legtöbbjében az atomerőművek tervezett élettartamát meghosszabbítják, másrészt mert a fejlődő ázsiai országokban jelentős atomerőmű építkezések vannak és lesznek is, ami miatt a térség 2020-ra megduplázza nukleáris kapacitását.

Az atomreaktorok üzemanyagát uránércből nyerik. A benne lévő uránnak csak 0,7%- a hasadóanyagnak alkalmas 235U, amelyet aztán mesterségesen feldúsítanak és ebből készül az erőműben használt fűtőelem.

A jelenlegi felhasználási ütem mellett (mely ma úgy tűnik, többé-kevésbé állandó marad) a Föld mélye 40-50-évre elegendő uránt rejt magában. Nukleáris szakemberek azonban kidolgoztak egy olyan technológiát, amely segítségével a földben hatalmas mennyiségben megtalálható tóriumot – mely eredetileg nem alkalmas hasadóanyagnak – át lehet alakítani üzemanyaggá. Az eljáráshoz úgynevezett tenyésztő reaktorokat kell építeni. Ha ez a ciklus megvalósul, akkor a tórium készletek még további 2-3000 évre (!) elegendő energiaforrást biztosítanak, ami megnyugtatóan sok.A nukleáris energia felhasználása a fosszilis tüzelőanyagokhoz képest minimális környezeti terheléssel jár. Az atomerőművek nem bocsátanak ki káros anyagokat, és normál körülmények között a környezet radioaktív anyagokkal való terhelése is elhanyagolható. Sajnos azonban két ellenérv is felhozható az atomenergia alkalmazása ellen. Ha súlyos reaktorbaleset következik be, nagy mennyiségű radioaktív anyag juthat a környezetbe, ami beláthatatlan következményekkel járhat. Erre a lehetőségre legyinthetnénk, ha Csernobillal az élen nem szolgálhatnánk ellenpéldákkal. Bár a nukleáris ipar biztonsági előírásai ma már összehasonlíthatatlanul szigorúbbak, mint Csernobil előtt voltak, egy ilyen baleset lehetőségét sohasem lehet majd teljesen kizárni.

A másik gond, hogy az elhasznált, de erősen radioaktív fűtőelemeket, valamint a működés során, és az atomerőmű lebontásakor keletkező, szintén radioaktív hulladékokat biztonságosan tárolni kell. A tárolás időtartama a hulladék lebomlási idejétől és aktivitásától függően lehet néhány száz év (kis-, és közepes aktivitású hulladékok), de akár több ezer év is (nagy aktivitású hulladékok). Bár ennek biztosítására ma már megvannak a technológiák, a túl nagy időtávlatok gondolkodóba ejtik az embert: a zöldek szívesen elbeszélgetnének azzal, aki kijelenti nekik, hogy olyan tárolót képes építeni, amely 10 ezer évre garantálni tudja a radioaktív anyagok izolációját.

Az atomenergia tehát egy olyan ellentmondásos energiatermelési forma, mely bár képes lenne biztosítani az emberiség energiaszükségletét, számos veszéllyel is jár.

Megújuló energiaforrások

A megújuló energiaforrásokról az utóbbi két évtizedben a környezetvédelem és a fenntartható fejlődés kapcsán nagyon sokat lehetett hallani. Megújuló energiaforrásoknak nevezzük mindazokat az energiafajtákat, melyek az emberi felhasználás eredményeként nem csökkennek, vagy a felhasználás ütemében újratermelődnek. A zöld szervezetektől mást sem hallani, mint hogy az emberiségnek a környezetszennyezés csökkentése és a fenntartható fejlődés biztosítása érdekében a fosszilis tüzelőanyagok és az atomenergia használata helyett a megújuló energiaforrásokra kellene áttérnie. A korábban látott diagrammból kiderül, hogy (ha a vizienergiát és a biomassza energiát nem számítjuk), az emberiség összes energiaszükségletének csak 0,5 %-át fedezi a zöldek által sokat emlegetett nap-, szél-, és egyéb megújuló energiaforrásokból. Ez rendkívül csekély mennyiség. Vajon miért van ez? Miért nem használjuk a környezetbarátnak mondott megújuló energiaforrásokat? És valóban olyan környezetbarátak? Valóban képesek biztosítani az emberiség növekvő energiaigényeit? Amint mindjárt kiderül, sajnos ezekkel az energiatermelési módokkal is számos energetikai és környezetvédelmi probléma párosul.

Vízenergia

A vízenergiának a megújuló energiaforrások között kitüntetett szerepe van, mert a biomassza hasznosítás kivételével jelenleg az egyetlen, amely számottevő szerepet játszik a világ energiaigényének kielégítésében (2,3 %). Az elektromos energiatermelés hőskorában, a XX. század első felében sokáig úgy tűnt, a vízenergia lehet az elektromos áramtermelés legfőbb forrása, és a ma fejlett országokban sorra épültek a vízerőművek. A vízenergia részaránya azonban néhány évtizede mégis folyamatosan csökken. Előállítási költsége ugyanis nagyban függ attól, hogy milyen adottságú helyre telepítik az erőműveket. Először természetesen a legjobb helyekre kerültek. Miután azonban ezeket már felhasználták, a rosszabb adottságú területek már egyre kevésbé voltak versenyképesek az olcsó kőolajjal és földgázzal szemben.

A fejlett országokban a vízenergia termelés az elmúlt 30 évben nem nőtt jelentősen és várhatóan már nem is fog. Más a helyzet a fejlődő országokban, ahol még nem használták ki az összes kedvező földrajzi helyzetű területet (például jelenleg is építik a világ majdan legnagyobb energiatermelő mammutját Kínában a Jangce folyón, mely 2009-re készül el és 18,2 GW teljesítményű lesz). Ha számításba vesszük az összes olyan helyet a Földön, ahol egyáltalán érdemes vízerőművet építeni (ezt energiagazdálkodási szakemberek megtették), akkor kiderül, hogy ezek összesen mintegy 3 TW teljesítménnyel tudnának üzemelni.

Az emberiség jelenleg mintegy 14 TW-ot használ, tehát, ha ma minden szóba jöhető helyen lenne vízerőmű, akkor is alig több, mint 20 %-át tudná fedezni a mai szükségleteknek, amely arány a jövőben tovább romlik. Ma még a 3 TW-nak csak mintegy 12 %-át használják ki, tehát elvileg mód van a vízenergia felhasználásának bővítésére, de a további építkezéseket akadályozza az a tény is, hogy a vízerőmű építés jelentős környezeti károkat okoz. A gátak, víztározók, csatornák, zsilipek építése a környezet nagymértékű átalakításával jár. Embereket kell lakóhelyükről elköltöztetni, területeket elárasztani, ami az ökoszisztéma megváltozását eredményezi. Fajok tűnhetnek el a területről, vagy pusztulhatnak ki (na jó, azért legyünk igazságosak: az árvízveszély megszüntetése, az öntöző és ivóvízellátás biztosítása a vízierőművek jótékony hatásai közé tartozik, igaz, ez nem a környezetnek, hanem csak az embernek segít). Mindezek miatt Kanada kivételével egyetlen fejlett ország sem tervezi nagyobb vízerőmű üzembe helyezését. A zöldek is több fantáziát látnak a kisebb, helyi igényeket kielégítő vízerőművekben, melyek jobban képesek beilleszkedni a környezetbe, ezek azonban soha nem fognak jelentős mennyiségű energiát termelni.A vízenergiatermelés tehát még növelhető, de semmiképpen nem képes az emberiség növekvő energiagondjait megoldani, használata pedig jelentős környezetrombolással jár együtt

Napenergia

Az emberiség által kiaknázható napenergia készlet megdöbbentően nagy. Ha azt mondtuk, hogy jelenleg évente 14 TW év energiát használunk, akkor a Földre évente érkező kb. 90 000 TW évből (!) a mai becslések szerint kiaknázható 1000 TW év energia valóban hatalmas mennyiség. A napenergia hasznosításának számos módja van, ezek technikailag két főbb csoportba sorolhatók. Az egyik esetben a napsugárzást hővé alakítják. Ehhez olyan felületre van szükség, amely jól nyeli el a sugárzást, felmelegszik és hőjét átadja pl: a vele érintkező víznek. Ezt a vizet közvetlenül is fel lehet használni, de akár villamos energia is termelhető vele. Az ilyen berendezéseket napkollektoroknak nevezzük.

A másik csoportba a napelemek tartoznak, melyek a fotoelektromos hatás segítségével a rájuk eső napsugárzásból közvetlenül elektromos áramot állítanak elő. Az első csoportba tartozó rendszerek technológiája ma már érettnek tekinthető, olyannyira, hogy egyes melegebb éghajlatú országokban – ilyen például Görögország és Izrael – az egy-egy ház melegvíz ellátására szolgáló napkollektorok rendkívül elterjedtek. A napelemek ma is folyamatos fejlesztés alatt állnak.

Adott tehát egy kimeríthetetlen, hatalmas mennyiségben rendelkezésre álló energiaforrás, amelynek kihasználása ráadásul nem szennyezi a környezetet. A napsugárzás hasznosítása ma a fő energiaforrásokhoz képest mégis elenyésző. Ennek magyarázata a napenergia tulajdonságaiban és a napenergia hasznosítás jelenlegi fejlettségében keresendő. A napsugárzás nem egyenletesen érkezik a Földre, intenzitása az évszak, a napszak és az időjárás változásával jelentősen módosul. Ez a megbízhatatlanság rendkívül megnehezíti a napenergia ipari méretű hasznosítását, ugyanis az általa termelt energia mennyisége a Föld jelentős részén nem tervezhető előre. Nehéz lenne egy olyan gazdaságot működtetni, amely leáll, ha felhős az idő. Erre a problémára megoldást jelentene, ha a villamos energiát ipari méretekben lehetne tárolni, mert így a megtermelt energiát egyenletesen lehetne a hálózatba juttatni. Sajnos ez ésszerű költségekkel jelenleg nem megoldható.

A megbízhatatlanság mellett a napenergia hasznosítás másik akadálya az, hogy az energiát óriási területről kell összegyűjteni. Egy naperőmű telep körülbelül 50-100-szor akkora helyet foglal el, mint egy ugyanannyi energiát előállító atom, vagy hőerőmű. Ahhoz például, hogy a Magyarország számára ma szükséges energiát napelemekből elő tudjuk állítani, az ország területéből nagyságrendileg 100 km2-t kellene lefedni.

A napenergia termelés elterjedésének harmadik gátja az ára. A napelemek és napkollektorok jelenleg még túlságosan drágák ahhoz, hogy versenyezni tudjanak a nem megújuló energiaforrásokkal (az a néhány naperőműtelep a világon, amely a hálózatba áramot termel, mind jelentős állami támogatással épült). Ez a napelemek esetében a jövőben valószínűleg változni fog. A napelemek előállításához ugyanis félvezetőket használnak, és a félvezetőipar mögött olyan hatalmas kutató-fejlesztő apparátus áll, hogy azok előállítási költsége jelentősen csökkenhet. Ezzel párhuzamosan hatásfokuk is nőni fog, ami kisebb területeken való megépítésüket teszi lehetővé. A napenergia hasznosítás előtt mindent összevetve szép jövő áll – leginkább más energiaforrásoktól távoli helyeken, vagy kisebb közösségek igényeinek kielégítésére – de kiszámíthatatlan jellege és hatalmas területigénye miatt ma úgy látszik, nem válhat elsődleges energiaforrássá.

Szélenergia

Energetikai szakemberek ma a szélenergiát tartják a legígéretesebb megújuló energiaforrásnak. Bár becsült kiaknázható éves mennyisége lényegesen kisebb a napenergiáénál – mintegy 10 TW év – ez bőven elegendő arra, hogy meghatározó szerepet játszhasson az energiatermelésben. Az emberiség már évszázadok óta használja ezt az energiaforrást. A szélenergia hasznosítására szolgáló gépek lényegében ma is ugyanazon az elven működnek, mint a régi szélmalmok, legfeljebb alakjuk változott kissé, na meg az, hogy ma elektromos energia termelésére használják őket és nem őrlésre. Technológiájukból adódóan a szélgépek turbinái nemcsak szélcsendben, hanem kis szélsebesség (9 – 18 km/óra) mellett sem tudnak üzemelni, túl nagy sebesség ( a szélturbina fajtájától függően 50 – 100 km/óra körül) mellett pedig a berendezések biztonsága érdekében kell őket leállítani, vagyis csak viszonylag állandó, közepes szélsebességű helyeken használhatók gazdaságosan. A legalkalmasabb ilyen helyek a tengerpartok, de szélerőművek a kontinensek belsejében is találhatók.

A szélenergia a fejlett országokban ma a leggyorsabban növekvő megújuló energiaforrás. Európa ebben élen jár a világon: Németország a világ legnagyobb szélenergia termelője, Dánia elektromos energiájának 12 %-át szélerőművek termelik.

A szélenergia hasznosítás sem mentes azonban a problémáktól. A napenergiához hasonlóan ez is nagyságrendileg 100-szor nagyobb területet igényel egy fosszilis tüzelőanyagot használó erőműnél, mivel a szélturbinák között az optimális hatásfokhoz megfelelő távolságot kell tartani. Sokan támadják amiatt a szélerőműveket, hogy a nagy sík területen álló magas szélturbinák hatalmas részt vesznek el a természettől, ráadásul képtelenek beilleszkedni abba, rontva ezzel a tájképet. Kompromisszumos megoldásként már épültek szélerőművek tengerpart közeli vízekben.

Bár az esztétika némileg megítélés kérdése, az viszont már nem, hogy a turbinák rendkívül veszélyesek a madarakra. 1991-ben az akkor 1731 MW-os amerikai szélerőmű park becslés szerint egy év alatt mintegy 10 ezer szárnyast kaszabolt le. A szélerőművek ráadásul zajosak is, ezért lakott településektől megfelelő távolságba kell őket építeni, és ezzel még nem oldódott meg a természet zajterhelésének kérdése. A költségekkel is probléma van: bár az utóbbi 30 évben jelentősen csökkent, a szélenergia termelés fajlagos költsége még mindig többszöröse a fosszilis tüzelőanyagokénak. Emiatt a legtöbb országban állami támogatásra szorulnak a szélerőműveket üzemeltető vállalkozások. Bár a szélenergia termelés minden bizonnyal növelni fogja részesedését a világ energiatermeléséből, a hatalmas területigény miatt valószínűtlen, hogy valaha is meghatározó szerephez jutna.

Biomassza

A biomassza gyűjtőfogalom, az élő szervezetekből származó, folyamatosan termelődő, energiatermelésre felhasználható anyagokat jelenti. Ez az emberiség legősibb energiaforrása. Máig legelterjedtebb ezek közül a fa, de ide tartoznak a mezőgazdasági termelésből visszamaradt növényi hulladékok, állati termékek, az ipari és kommunális szemét, de azok a növények is, melyek magvaiból üzemanyagot lehet gyártani. A biomasszát többféleképpen használhatják fel. Egyrészt közvetlenül elégethetik, ez a hagyományos biomassza hasznosítás. A biomasszából származó energia túlnyomó részét így termelik, a fa ma is a világ energiaszükségletének több, mintegy 11 %-át fedezi. Másrészt később felhasználható energiaforrást, például belsőégésű motorok üzemanyagát (ebben Brazília jár élen a világon, ahol cukornádból biztosítják az ország üzmanyagszükségletének 60 %-át), vagy biogázt állíthatnak elő belőle, ezek a módszerek a modern biomassza hasznosítást képviselik.

A biomassza erősen kilóg a megújuló energiaforrások sorából amiatt, hogy használata a fosszilis tüzelőanyagokhoz hasonlóan környezetszennyezéssel jár. Annyiból jobb a helyzet, hogy ha az elégetett biomassza mennyisége ugyanannyi, mint a megtermelté, akkor a CO2 gáz kibocsátása a fenntartható fejlődéssel összeegyeztethető, mert a felszabaduló CO2 mennyisége pontosan annyi, amennyit az adott növény korábban megkötött. A Világ éves biomassza potenciálját a Világ mai éves energiafelhasználásának mintegy kétszeresére becsülik. A biomassza versenyképessége a felhasznált alapanyagtól és az adott lejárás technológiai fejlettségétől függően nagyon változó. Ha arra kérdésre keressük a választ, lehet-e primer energiaforrás az emberiség számára, nemmel kell felelnünk. Ekkor ugyanis csak az energiaültetvények (vagyis a kifejezetten energiatermelés céljára termesztett növények) jönnek szóba. Ugyanannyi energiát a növények közül a cukornádból lehet legkisebb területen “termeszteni”, de egy 1000 MW-os átlagos hőerőmű teljesítményének eléréséhez így is 1300 km2 kell felhasználni.

A megújuló energiaforrásokkal kapcsolatos kutatás fejlesztési tevékenység az 1973-as olajárrobbanást követően kapott nagy lendületet. Azóta minden megújuló energiaforrás fajlagos költsége jelentősen csökkent. A vízenergia és a biomasszából származó energia kivételével azonban ezek az energiaforrások még mindig nem versenyképesek, emiatt az erre épülő vállalkozások ma még túlnyomórészt állami támogatással működnek. A megújuló energiaforrások felhasználása az előrejelzések szerint mintegy 50 %-al nőni fog az elkövetkező 20 évben (Európában ez még nagyobb növekedést jelent, az Európa Parlament által 2001-ben elfogadott irányelv szerint 2012-re duplájára kell emelni a megújuló energiaforrások részarányát az Európai Unióban).

A megújuló energiaforrások ritkán hangoztatott jellegzetessége a decentralizáltság. A szinte minden országban monopolhelyzetben levő energiatermelő vállalatok által képviselt centralizáltság helyett a helyi közösségek önellátásának kialakulását segíti elő. Bár a megújuló energiaforrások részesedése az energiatermelésből a jövőben örvendetesen nőni fog, sajnos nem képesek környezeti terhelés nélkül energiát biztosítani, sokuk egyelőre nem versenyképes, és jelentős mértékben nem fogják tudni enyhíteni az emberiség növekvő energiagondjait.

Az előbbiekben áttekintettük az emberiség által hasznosított energiaforrásokat. Kötekedők voltunk és a túlélés érdekében próbáltunk minél több hibát találni. Kiderült, hogy valahogy mindegyik energiatermelési formával sántít valami. A fosszilis tüzelőanyagok pusztítják a környezetet és el is fogynak. Az atomenergia veszélyes lehet. A megújuló energiaforrások vagy nem elég hatékonyak, vagy nagy terület kell hozzájuk, vagy megbízhatatlanok, vagy drágák.

Vonatkoztassunk most el egy kicsit a valóságtól és tapasztalataink alapján fogalmazzuk meg, milyen lenne az ideális energiaforrás:

– Legyen kímeríthetetlen

– Kis területen biztosítsa nagy mennyiségű energia előállítását

– Ne károsítsa a környezetet semmilyen formában: se a kiaknázására szolgáló berendezés építése alatt, se működés közben, se akkor, ha baleset történik

– Legyen olcsó.

– Tetszőleges mennyiségben és időbeli ingadozások nélkül szolgáltasson energiát.

Összegezve: legyen képes az egész emberiség energiaigényét folyamatosan, a fenntartható fejlődéssel összeegyeztethető módon kielégíteni. A ma használt energiaforrások egyike sem ideális energiaforrás.

Kapcsolódó anyagok: Climate Change Science: Adapt, Mitigate, or Ignore? David A. King, az angol kormány tudományos főtanácsadója

2004 Magyar Euratom Fúziós Szövetség.